Радиомаячная система VOR и её применение для полёта по ЛЗП, определение МС. Радиотехнические системы ближней навигации Задний межкомпонентный соединитель А1

Задачи, решаемые бортовой аппаратурой в режиме "Навигация" (в дальнейшем "VOR"), изложены в § 3.1. Основной задачей является измерение азимута (магнитного пеленга) на радиомаяк (AM), т. е. угла в горизонтальной плоскости между направлением магнитного меридиана, проходящего через центр тяжести ВС, и направлением на радиомаяк.

Всенаправленный радиомаяк VOR международной системы входит в состав азимутально-дальномерной системы ближней радионавига­ции, которая принята странами - членами ICAO в качестве стандарт­ной системы. Ее азимутальную часть составляют радиомаяки VOR, a дальномерную - DME (distance measuring eguipment, что означает - оборудование измерения дальности).

Радиомаяк VOR предназначен для задания информации о азимуте ВС, работает в диапазоне 108…117,95 МГц и выпускается в двух вариантах: категории А с дальностью действия до 370 км и категории В до 46 км. На несущей частоте он излучает сигналы опорной и перемен­ной фаз частотой 30 Гц. Сигнал опорной фазы излучается антенной, которая формирует круговую диаграмму направленности 2 (рис. 3.14), и фаза его (30 Гц) во всех направлениях относительно маяка постоян­на. Несущая частота сигнала опорной фазы модулируется по амплиту­де напряжением поднесущей частотой 9960 Гц, которая в свою очередь модулирована по частоте напряжением частотой 30 Гц с девиацией частоты Δf = ±480 Гц.

Сигнал переменной фазы излучается антенной, которая формирует диаграмму направленности 1 в виде восьмерки и вращается с частотой 30 об/с (30 Гц). Он амплитудно-модулирован напряжением частотой 30 Гц. За один оборот вращения антенны фаза сигнала переменной фазы изменяется от 0 до 360°. Радиомаяк регулируется так, чтобы в направ­лении на магнитный меридиан, проходящий через место установки радиомаяка, сигналы опорной U оф и переменной U п ф фаз совпадали, а в других азимутальных положениях отличались бы по фазе. Диаграммы направленности антенн обоих сигналов в пространстве склады­ваются, образуя результирующую 3 с максимумом излучения в направлении 1 на магнитный меридиан. Совпадение фаз сигна­лов в направлении на магнитный меридиан является началом отсчета. В этом направлении фазовый сдвиг равен нулю, в других направлениях (II-IV)

Рис. 3.14. Диаграмма направленности антенн радиомаяка VOR

изменяется от 0 до 360 . Таким образом, информация об азимуте самолета содержится в фазовом сдвиге между сигналами опорной и переменной фаз, азимут AM определяется соотношением AM = АС ±180°.

Для опознавания маяков VOR несущая частота манипулируется кодом Морзе сигналом частотой 1020 Гц. Позывные сигналы могут передаваться и голосом с помощью магнитной записи. Кроме того, на несущей частоте может передаваться и сообщение на ВС.

Структурная схема бортовой аппаратуры представлена на рис. 3.15. Высокочастотные сигналы маяка VOR через антенну поступают в устройство УНП на блок БВЧК, который с помощью пульта управления настраивается на частоту радиомаяка VOR. В блоке БВЧК сигналы опорной и переменной фаз усиливаются, преобразуются и детекти­руются. На нагрузке амплитудного детектора выделяется сигнал переменной фазы U пф частотой 30 Гц, сигнал опорной фазы U оф, предс­тавляющий собой частотно-модулированное колебание частотой 9960 Гц, модулированное по частоте напряжением частотой 30 Гц, и сигналы опознавания частотой 1020 Гц. Они поступают в блок БНЧК. В блоке БНЧК посредством фильтра 10 кГц и частотного детектора (ЧД) выде­ляется сигнал U оф частотой 30 Гц, который поступает в следящий (автоматический) и через селектор курса (СК) в селекторный (ручной) каналы. На эти каналы поступает и сигнал U пф частотой 30 Гц. Кроме того, сигналы U оф и U пф используются в устройстве индикации "На-От".

Рис. 3.15. Структурная схема бортовой аппаратуры в режиме "VOR"

Следящий канал измеряет азимут маяка посредством измерения фазового сдвига между сигналами U оф и U пф частотой 30 Гц.

Основным элементом канала является фазовый детектор (фазочувствительный выпрямитель) ФД2. На него через усилитель сигнала опорной фазы УОФ2 поступает сигнал U оф , причем он поступает через фазовращатель ФВ2, который управляется двигателем M1. Фаза выход­ного напряжения фазовращателя пропорциональна углу поворота его ротора. Кроме того, на детектор ФД2 поступает и сигнал U пф , который выделяется фильтром ФНЧ2 и усиливается усилителем сигнала пере­менной фазы УПФ2.

Детектор ФД2 формирует напряжение ± U у, значение которого зависит от фазового сдвига между сигналами U оф и U пф , т. е. от азимута AM. Это напряжение преобразуется преобразователем напряжения ПН в переменное частотой 400 Гц соответствующей фазы и амплитуды, которое усиливается усилителем мощности и поступает на двигатель M1 . Если ВС находится в направлении на магнитный меридиан, фазо­вый сдвиг между сигналами U оф и U пф равен нулю, равно нулю напря­жение U у на нагрузке детектора ФД2, и двигатель не отрабатывает. При другом азимутальном положении ВС детектор формирует напря­жение ±U y . которое преобразуется в напряжение частотой 400 Гц, и оно после усиления поступает на двигатель M1. При его вращении изме­няется угловое положение ротора фазовращателя, что приводит к изменению фазы сигнала U оф. Это происходит до тех пор, пока его фаза не совпадет с фазой сигнала U пф и напряжение ±U y не станет равным нулю. Таким образом, угол поворота двигателя M1 и ротора фазовра­щателя пропорционален фазовому сдвигу между сигналами опорной и переменной фаз, т. е. азимуту.

Информация об азимуте от датчика ВС1 типа БСКТ поступает через устройство К на индикаторы ПНП. Одновременно в следящем канале определяется угол КУР (рис. 3.16, а) путем алгебраического сложения (вычитания) азимута AM и курса МК (КУР = AM - МК). Для этого используется дифференциальный датчик ВС2 типа БСКТ, ротор которого поворачивается двигателем на угол, пропорциональный азимуту AM. Статорная обмотка соединена с датчиком курсовой системы или устройства, измеряющих МК (БГМК-2 - блок гиромагнитного компаса самолета Ту-154М и БСФК-1 - базовая система формирования курса самолета Як-42). В роторной обмотке датчика ВС2 формируется напря­жение, пропорциональное КУР, информация о котором передается в РМИ (радиомагнитный индикатор) и ПНП-72.

Рис. 3.16. Определение КУР (а) и полет ВС по заданному азимуту (б)

Селекторный канал (см. рис. 3.15) определяет угловое (боковое) отклонение ΔА ВС от линии заданного пути (проходящей через маяк (рис. 3.16, б), которая задается вручную заданным азимутом А зад. Принцип работы основан на сравнении азимута А зад линии пути и текущего азимута на маяк АМ Т. Такое сравнение происходит в детекторе ФД1, на который поступает сигнал U пф содержащий информацию о текущем азимуте АМ Т, и сигнал U оф , поступающей через фазовраща­тель ФВ1 . Он конструктивно находится в селекторе курса СК у управ­ляется ручкой "Курс" (см. рис. 3.5) и содержит информацию о задан­ном азимуте А зад линии пути. При полете ВС по линии ЛЗП азимуты АМ Т и А зад одинаковы и напряжение ±U y детектора ФД1, пропорцио­нальное отклонению ДА, равно нулю. При отклонении ВС изменяется азимут АМ Т и напряжение ±U у . Сигнал отклонения DА через устройст­во К поступает на приборы ПНП и системы автоматического управле­ния (САУ-42, АБСУ-154).

Устройство непрерывного контроля параметров (УКП) формирует сигнал готовности "Гот.К" в виде напряжения +27 В. На него посту­пают напряжения U y с детектором ФД1 и ФД2 селекторного и следяще­го каналов, где они сравниваются, и при нормальной работе бортовой аппаратуры выдается сигнал "Гот.К". Он через устройство коммутации К поступает на бленкеры "К" приборов ПНП, лампы "Kl", "K2" селек­тора режимов и систему АФС "Лилия" самолета Як-42.

Устройство индикации - "На-От" осуществляет визуальную сигна­лизацию полета на маяк и от него. Оно управляется сигналами U оф частотой 30 Гц селекторного (А зад) и следящего (АМ Т ) каналов, которые снимаются после фазовращателей этих каналов. При полете на маяк эти сигналы синфазны и устройство выдает напряжение сигнализации "На" в виде напряжения +27 В. При пролете маяка азимут AM, изме­няется на 180°, поэтому изменяется фаза сигнала U оф следящего канала на 180° и на входе устройства "На-От" сигналы U оф обоих каналов будут в противофазе, оно выдает напряжение для сигнализации "От". В качестве сигнализаторов используются светосигнализаторы "На" и "От" (самолет Ту-154М) и указатели направления полета с символами "А" (На) и "V" (От) приборов ПНП в виде двухполярного магнито­электрического индикаторного индекса.

В блоке БНЧК отдельные каскады и фазовые детекторы используются в режиме "VOR" и "Посадка" при контроле линии курса посад­ки в системах СП-50М, СП-68 (см. § 3.2). Фазовый детектор следящего (автоматического) канала в режиме "Посадка" используется в конт­рольном, селекторного (ручного) - в основном каналах. Коммутация детекторов осуществляется специальными схемами - коммутаторами. Телефонный канал режима "VOR" общий с курсовым каналом режима "Посадка".

Для использования бортовой аппаратуры в режиме "VOR" на пульте управления устанавливают частоту маяка VOR и селектором курса вводят требуемый азимут линии заданного пути.

Предназначен для формирования в пространстве навигационных сигналов с информацией:

    Об азимуте любой точки зоны действия относительно магнитного меридиана.

    об отклонениях вс от заданного пеленга

    Индикация «от-на»,которая говорит о направлении полета

    сигналы опознавания(морзянка)

    речевые сообщения(метровый диапазон)960-1215 мгц

Наземный всенаправленный азимутальный ОВЧ-радиомаяк (РМА) предназначен для измерения азимута воздушного судна относительно места установки маяка при полетах ВС по трассам и в зонах аэродромов.

РМА используется ВС для захода на посадку по приборам, в случае если антенная система РМА юстирована по магнитному меридиану, а РМА расположен на осевой линии взлетно-посадочной полосы (далее – ВПП) (в створе ВПП) или в стороне от осевой линии, но при этом:

    если линии пути конечного этапа захода на посадку пересекает продолжение осевой линии ВПП, то точка пересечения должна находиться на расстоянии не менее 1400 м от порога ВПП, а угол пересечения не должен превышать 30° для схем захода на посадку, предназначенных только для воздушных судов категории А, В и 15° для остальных схем;

    если линия пути конечного этапа захода на посадку не пересекает продолжение осевой линии ВПП перед порогом, то угол между линией пути конечного этапа захода на посадку и продолжением осевой линии ВПП должен быть менее 5°, а на расстоянии 1400 м от порога ВПП линия пути конечного этапа захода на посадку должна проходить не далее 150 м от продолжения осевой линии ВПП.

Примечание: РМА считается расположенным в створе ВПП, если магнитный путевой угол (МПУ) последней прямой захода на посадку отличается от МПУ залегания ВПП, используемой для посадки, на угол не более ±5°.

РМА, РМД и РМА/РМД должны быть размещены на трассе или аэродроме в соответствии с требованиями технической документации на данный тип оборудования, таким образом, чтобы максимально обеспечить решение навигационных задач. Место размещения РМА должно быть ровным или иметь уклон не более 4% на расстоянии до 400 м от маяка. Место установки РМА должно находиться возможно дальше от ограждений и воздушных проводных линий, высота которых должна быть относительно центра антенны составлять угол не более 0,5 град. Сооружения не должны находиться ближе 150 м от позиции и иметь угол места более 1,2 град. Антенное устройство РМД должно быть расположено над антенным устройством маяка РМА при использовании приемоответчика РМД совместно с маяком РМА. Допускается разнесение антенных устройств РМД и РМА на расстояние не более30 м при обеспечении полетов в районе аэродрома и не более 600 м при обеспечении полетов по воздушным трассам.

Радиомаяк азимутальный VOR (РМА-90) является наземным оборудованием азимутальной системы навигации воздушных судов метрового диапазона волн с форматом сигналов VOR, и рекомендован ICAO в качестве основного средства измерения азимута на авиатрассах или в качестве дополнительного средства обеспечения захода на посадку и посадки самолетов гражданской авиации (ГА). (РМА-90) предназначен для формирования в пространстве навигационных сигналов, содержащих информацию об азимуте любой точки зоны действия относительно точки установки радиомаяка, и сигналов опознавания радиомаяка.

При одновременном приеме бортовой аппаратурой сигналов двух VOR может быть определено положение воздушного судна. Для этого необходима карта и знание местоположения радиомаяков. VOR может объединяться с дальномерным радиомаяком DME/N. В этом случае при наличии на борту воздушного судна соответствующей дальномерной аппаратуры достаточно одного совмещенного радиомаяка VOR/DME для определения положения воздушного судна в системе полярных координат «азимут - дальность».

Принцип работы

Амплитудно-частотно-модулированный сигнал опорной фазы излучается неподвижной всенаправленной антенной. Амплитудно-модулированный частотой 30Гц сигнал переменной фазы излучается вращающейся (30 об/с) направленной антенной с диаграммой направленности в виде "восьмёрки".

Складывающиеся в пространстве диаграммы направленности образуют переменное по амплитуде поле, изменяющееся с частотой 30Гц. Радиомаяк VOR ориентирован так, что фазы опорного и переменного сигналов совпадают в направлении магнитного северного меридиана. В момент, когда максимум диаграммы направленности вращающегося поля направлен туда, частота сигнала поднесущей имеет максимальное значение(1020Гц). В остальных направлениях фазовый сдвиг меняется от ноля до 360 градусов. Упрощённо можно представить VOR как радиомаяк, излучающий в каждом направлении свой индивидуальный сигнал. Количество таких "сигналов-азимутов" определяется только чувствительностью бортового оборудования к величине сдвига фаз, прямо пропорционального текущему азимуту ЛА относительно радиомаяка. В этом контексте, вместо понятия "азимут" употребляется термин радиал (VOR Radials). Принято считать что количество радиалов равно 360. Номер радиала совпадает с числовым значением магнитного азимута.

Основные технические характеристики VOR (РМА-90)

Зона действия:

    в горизонтальной плоскости от 0 до 360

    в вертикальной плоскости (относительно поверхности ограничения прямой видимости), град не более 3

    снизу, град не менее 40

    сверху, град по дальности: не менее 300

    на высоте 12000 м, км не менее 100

    на высоте 6000 м (при половинной мощности), км

    Поляризация излучения горизонтальная

    Погрешность информации об азимуте в точках на удалении 28 м от центра антенны, град не более 1

    Частота рабочего канала (несущих колебаний), одно из дискретных значений в диапазоне 108,000-117,975 МГц через 50 кГц

    Мощность несущих колебаний (регулируемая), Вт от 20 до 100

    Габаритные размеры и масса шкафа РМА 496x588x1724 мм; не более 200 кг

    Диаметр экрана антенны РМА 5000 мм

    Масса антенны РМА

    без экрана 130 кг

    Радиомаяки, также как и обычные маяки, служат для навигации, для определения местоположения судов. Для определения направления на радиомаяк пилоту нужен радиокомпас.

    NDB и VOR

    NDB (Non-Directional Beacon ) – приводная радиостанция (ПРС) – радиомаяк, работающий на средних волнах в диапазоне 150-1750 кГц. Самый простой домашний радиоприемник АМ-FM способен принимать сигналы таких маяков.

    Жители Санкт-Петербурга могут настроить приемник на частоту 525 кГц и услышать морзянку: «PL» или точка-тире-тире-точка, точка-тире-точка-точка. Это местный NDB радиомаяк, который приветствует нас из Пулково.

    Кто-то из коллег вирпилов, сравнивая принципы работы маяков NDB и VOR, привел интересную аналогию. Представьте, что вы с другом потерялись в лесу. Ваш друг кричит: «Я здесь!». Вы определяете направление на голос: судя по компасу, азимут – скажем, 180 градусов. Это NDB.

    А вот если бы ваш друг кричал: «Я здесь – радиал 0 градусов!». Вот это уже – VOR.

    VOR (VHF omnidirectional radio range ) – Всенаправленный азимутальный радиомаяк (РМА), работающий на частотах в диапазоне 108 – 117.95 МГц.

    NDB посылает одинаковый сигнал во всех направлениях, а VOR транслирует информацию об угле между направлением на Север и направлении на самолет относительно СЕБЯ или иными словами – РАДИАЛ.

    Не понятно? Скажем иначе. VOR в каждом направлении от себя – от 0 до 360 градусов – излучает индивидуальный сигнал. Грубо говоря, 360 сигналов по кругу. Каждый сигнал несет в себе информацию об азимуте любой точки относительно маяка, где этот сигнал принимается. Эти сигналы-лучи называются радиалами. На Север он посылает сигнал 0 (ноль) градусов, на Юг – 180 градусов.

    Если бы ваш любительский AM/FM приемник мог принимать частоты VOR и декодировать их, то, приняв такой сигнал, вы бы услышали: «Я – маяк SPB, радиал 90 градусов». Это значит, что ваше тело находится ОТ маяка строго на Востоке – 90 градусов. Это значит, что если вы пойдете строго на Запад – курсом 270 градусов – то рано или поздно вы увидите перед собой этот маяк.

    Самое важное для нас свойство VOR – возможность автоматического пилотирования на источник сигнала этого радиомаяка с выбранным курсом. Для этого навигационный приемник настраивается на частоту радиомаяка, а на панели автопилота выбирается курс подхода к нему.

    А как определить расстояние до маяка? Сколько до него идти? Для этого существует DME.

    DME (Distance Measuring Equipment ) – Всенаправленный дальномерный радиомаяк или РМД. Его задача – дать нам информацию о расстоянии между ним и нашим самолетом.
    DME обычно совмещен с VOR, и это очень удобно – иметь сведения о нашем положении относительно маяка и расстоянии до него. Только, для того, чтобы определить это расстояние самолет должен послать сигнал-запрос. DME отвечает на него, а бортовое оборудование вычисляет – сколько времени прошло между отправкой запроса и приемом ответа него. Всё происходит автоматически.

    VOR/DME – страшно полезная вещь при посадке.

    ILS

    Курсоглиссадная система – ILS. Это радионавигационная система захода на посадку. Ею оборудовано, пожалуй, 90 процентов аэродромов, куда садятся большие самолеты вроде нашего.

    ILS нужно знать как «Отче наш». ILS делает посадку не только удобной, но и безопасной. Есть аэродромы, где иные способы посадки невозможны или даже недопустимы.

    Из названия системы следует, что по ней самолет автоматически выравнивается по оси полосы (курсовая система) и автоматически входит в глиссаду и держит ее (глиссадная система).

    На земле установлены два радиомаяка: курсовой и глиссадный.

    Курсовой маяк – КРМ – (LOCALIZER ) наводит самолет на взлетно-посадочную полосу в горизонтальной плоскости, то есть по курсу.

    Глиссадный маяк – ГРМ – (GLIDESLOPE или Glidepath) ведет самолет на полосу в вертикальной плоскости – по глиссаде.

    Радиомаркеры

    Маркерные радиомаяки - это устройства, которые позволяет пилоту определить расстояние до взлетно-посадочной полосы. Эти маяки посылают сигнал узким пучком вверх, и когда самолет пролетает точно над ним, пилот узнает об этом.

    Основным навигационным средством в большинстве стран является VOR (VHF Omnidirectional Range navigation system), что в переводе на русский называет всенаправленный курсовой радиомаяк УКВ диапазона . Появившиеся в последнее время спутниковые навигационные системы не заменяют VOR, а дополняют их.

    Самолеты летают по воздушным трассам, которые строятся из отрезков. Отрезки образуют сеть, опутывающую целые государства. В узлах этой сети (на концах отрезков) расположены VOR-радиостанции.

    Радиомаяк VOR состоит из двух передатчиков на частотах 108,00-117,95 МГц . Первый передатчик VOR передает постоянный сигнал во все стороны, в то время как второй передатчик VOR представляет собой узконаправленный вращающийся луч , изменяющийся по фазе в зависимости от угла поворота, то есть луч пробегает круг в 360 градусов (как луч маяка). В результате получается диаграмма излучения в виде 360 лучей (один луч через каждый градус окружности). Принимающая аппаратура сравнивает оба сигнала и определяет «угол луча», на котором в данный момент находится самолет. Такой угол называется VOR-радиалом (VOR Radial).

    VOR-оборудование на борту самолета может определить, на каком из VOR-радиалов известной радиостанции находится самолет.

    На пилотажной карте вы можете найти необходимую VOR-станцию. На схеме выше показан самолет, находящийся на радиале 30 от VOR. Каждый VOR имеет свое название (VOR на рисунке называется KEMPTEN VOR) и сокращенное трехбуквенное обозначение (VOR на рисунке обозначается KPT). Рядом с VOR написана его частота, которую надо вводить в приемник. Таким образом, чтобы поймать сигнал от KEMPTEN VOR, надо ввести в приемник частоту 109.60.

    Очень часто самолеты оборудуются не одним, а сразу двумя приемниками VOR. В таком случае один приемник называется NAV 1, а второй соответственно NAV 2. Для ввода частоты в приемник VOR используется двойная круглая ручка. Большая ее часть используется для ввода целых, меньшая - дробных долей частоты VOR. Ниже показана типичная панель управления радионавигационными приборами.

    Задатчики частот VOR подписаны красным цветом. Это простейший вид приемников, который позволяет ввести только одну частоту VOR. Более сложные системы позволяют ввести сразу две частоты VOR, и быстро переключаться между ними. Одна частота VOR является неактивной (STAND BY), ее изменяет ручка задатчика частоты . Вторая частота VOR называется активной (ACTIVE), это та частота VOR, на которую настроен приемник в данный момент.

    На рисунке выше показан пример приемника с двумя задатчиками частоты VOR. Пользоваться им очень просто: при помощи круглого задатчика надо ввести требуемую частоту VOR, а затем сделать ее активной при помощи переключателя. При наведении мыши на колесико задатчика курсор мыши меняет форму. Если он выглядит как маленькая стрелка, то при нажатии на мышь сменятся десятые доли. Если стрелка большая, то изменяться будет целая часть числа.

    В кабине так же должен быть прибор, показывающий, на каком радиале VOR в данный момент находится самолет. Этот прибор обычно называется NAV 1, или VOR 1. Как мы уже выяснили, в самолете может иметься второй такой прибор. В самолете Cessna 172 их два:

    Прибор состоит из:

      подвижной шкалы, напоминающей шкалу компаса

      круглой ручки задатчика OBS

      стрелки индикатора направления TO-FROM

      транспаранта GS

      двух планок, вертикальной и горизонтальной

    Горизонтальная планка и транспарант GS используются при посадке по системе ILS .

    Ручка OBS вращает подвижную шкалу и настраивает тем самым приемник VOR на требуемый радиал. Например, так может выглядеть прибор, настроенный на радиал 30:

    На рисунке видно, что при вращении ручки OBS шкала поворачивается, и верхний уголок показывает на номер текущего радиала. Как и на компасе, все номера на приборе пишутся деленные на 10, таким образом цифра 3 обозначает радиал 30 .

    Вертикальная планка показывает отклонение от радиала. Если самолет находится на радиале, то планка будет стоять вертикально:

    Если самолет сместится правее радиала, то вертикальная планка отклонится влево, чтобы показать что к радиалу надо лететь в левую сторону.

    Когда пилот видит такую картину, он знает что для выхода на радиал надо повернуть влево. Правило очень простое: планка показывается в той стороне, в которую надо лететь.

    Аналогичная картина будет в случае если самолет окажется левее нужного радиала:

    Обратите внимание, что в данном случае самолет отклонился от радиала сильнее, и планка прибора соответственно так же отклонилась сильнее.

    Важной особенностью VOR является то, что прибор всегда показывает радиал, на котором находится самолет, независимо от курса , которым идет самолет. Например, на рисунке ниже показаны самолеты, летящие разными курсами. Поскольку они находятся на одном и том же радиале и у них одинаково настроен OBS, прибор VOR у всех самолетов покажет одно и то же.

    При полетах по VOR нужно помнить, что чувствительность прибора VOR возрастает при подлете к радиомаяку VOR, пока не пропадает в непосредственной близости от маяка. Около маяка VOR не надо гоняться за планкой, вместо этого, когда чувствительность становится чрезмерной, надо продолжать двигаться прежним курсом пока самолет не пройдет над маяком VOR.

    Итак, чтобы лететь по радиалу VOR надо настроить на приемнике его частоту VOR, задать при помощи OBS номер требуемого радиала и удерживать вертикальную планку по центру прибора. Если планка отклоняется влево, надо довернуть налево. Если вправо, надо повернуть направо. В случае бокового ветра, нужно довернуть на ветер, чтобы компенсировать снос самолета. Более подробно про полет в ветер можно прочитать в статье про

Loading...Loading...