Тангенциальное, или касательное ускорение. Ускорение – среднее, мгновенное, тангенциальное, нормальное, полное Тангенциальное ускорение характеризует изменение скорости

Даны основные формулы кинематики материальной точки, их вывод и изложение теории.

Содержание

См. также: Пример решения задачи (координатный способ задания движения точки)

Основные формулы кинематики материальной точки

Приведем основные формулы кинематики материальной точки. После чего дадим их вывод и изложение теории.

Радиус-вектор материальной точки M в прямоугольной системе координат Oxyz :
,
где - единичные векторы (орты) в направлении осей x, y, z .

Скорость точки:
;
.
.
Единичный вектор в направлении касательной к траектории точки:
.

Ускорение точки:
;
;
;
; ;

Тангенциальное (касательное) ускорение:
;
;
.

Нормальное ускорение:
;
;
.

Единичный вектор, направленный к центру кривизны траектории точки (вдоль главной нормали):
.


.

Радиус-вектор и траектория точки

Рассмотрим движение материальной точки M . Выберем неподвижную прямоугольную систему координат Oxyz с центром в некоторой неподвижной точке O . Тогда положение точки M однозначно определяются ее координатами (x, y, z) . Эти координаты являются компонентами радиус-вектора материальной точки.

Радиус-вектор точки M - это вектор , проведенный из начала неподвижной системы координат O в точку M .
,
где - единичные векторы в направлении осей x, y, z .

При движении точки, координаты изменяются со временем . То есть они являются функциями от времени . Тогда систему уравнений
(1)
можно рассматривать как уравнение кривой, заданной параметрическими уравнениями. Такая кривая является траекторией точки.

Траектория материальной точки - это линия, вдоль которой происходит движение точки.

Если движение точки происходит в плоскости, то можно выбрать оси и системы координат так, чтобы они лежали в этой плоскости. Тогда траектория определяется двумя уравнениями

В некоторых случаях, из этих уравнений можно исключить время . Тогда уравнение траектории будет иметь зависимость вида:
,
где - некоторая функция. Эта зависимость содержит только переменные и . Она не содержит параметр .

Скорость материальной точки

Скорость материальной точки - это производная ее радиус-вектора по времени.

Согласно определению скорости и определению производной:

Производные по времени, в механике, обозначают точкой над символом. Подставим сюда выражение для радиус-вектора:
,
где мы явно обозначили зависимость координат от времени. Получаем:

,
где
,
,

- проекции скорости на оси координат. Они получаются дифференцированием по времени компонент радиус-вектора
.

Таким образом
.
Модуль скорости:
.

Касательная к траектории

С математической точки зрения, систему уравнений (1) можно рассматривать как уравнение линии (кривой), заданной параметрическими уравнениями. Время , при таком рассмотрении, играет роль параметра. Из курса математического анализа известно, что направляющий вектор для касательной к этой кривой имеет компоненты:
.
Но это есть компоненты вектора скорости точки. То есть скорость материальной точки направлена по касательной к траектории .

Все это можно продемонстрировать непосредственно. Пусть в момент времени точка находится в положении с радиус-вектором (см. рисунок). А в момент времени - в положении с радиус-вектором . Через точки и проведем прямую . По определению, касательная - это такая прямая , к которой стремится прямая при .
Введем обозначения:
;
;
.
Тогда вектор направлен вдоль прямой .

При стремлении , прямая стремится к касательной , а вектор - к скорости точки в момент времени :
.
Поскольку вектор направлен вдоль прямой , а прямая при , то вектор скорости направлен вдоль касательной .
То есть вектор скорости материальной точки направлен вдоль касательной к траектории.

Введем направляющий вектор касательной единичной длины :
.
Покажем, что длина этого вектора равна единице. Действительно, поскольку
, то:
.

Тогда вектор скорости точки можно представить в виде:
.

Ускорение материальной точки

Ускорение материальной точки - это производная ее скорости по времени.

Аналогично предыдущему, получаем компоненты ускорения (проекции ускорения на оси координат):
;
;
;
.
Модуль ускорения:
.

Тангенциальное (касательное) и нормальное ускорения

Теперь рассмотрим вопрос о направлении вектора ускорения по отношению к траектории. Для этого применим формулу:
.
Дифференцируем ее по времени, применяя правило дифференцирования произведения:
.

Вектор направлен по касательной к траектории. В какую сторону направлена его производная по времени ?

Чтобы ответить на этот вопрос, воспользуемся тем, что длина вектора постоянна и равна единице. Тогда квадрат его длины тоже равен единице:
.
Здесь и далее, два вектора в круглых скобках обозначают скалярное произведение векторов. Продифференцируем последнее уравнение по времени:
;
;
.
Поскольку скалярное произведение векторов и равно нулю, то эти векторы перпендикулярны друг другу. Так как вектор направлен по касательной к траектории, то вектор перпендикулярен к касательной.

Первую компоненту называют тангенциальным или касательным ускорением:
.
Вторую компоненту называют нормальным ускорением:
.
Тогда полное ускорение:
(2) .
Эта формула представляет собой разложение ускорения на две взаимно перпендикулярные компоненты - касательную к траектории и перпендикулярную к касательной.

Поскольку , то
(3) .

Тангенциальное (касательное) ускорение

Умножим обе части уравнения (2) скалярно на :
.
Поскольку , то . Тогда
;
.
Здесь мы положили:
.
Отсюда видно, что тангенциальное ускорение равно проекции полного ускорения на направление касательной к траектории или, что тоже самое, на направление скорости точки.

Тангенциальное (касательное) ускорение материальной точки - это проекция ее полного ускорения на направление касательной к траектории (или на направление скорости).

Символом мы обозначаем вектор тангенциального ускорения, направленный вдоль касательной к траектории. Тогда - это скалярная величина, равная проекции полного ускорения на направление касательной. Она может быть как положительной, так и отрицательной.

Подставив , имеем:
.

Подставим в формулу:
.
Тогда:
.
То есть тангенциальное ускорение равно производной по времени от модуля скорости точки. Таким образом, тангенциальное ускорение приводит к изменению абсолютной величины скорости точки . При увеличении скорости, тангенциальное ускорение положительно (или направлено вдоль скорости). При уменьшении скорости, тангенциальное ускорение отрицательно (или направлено противоположно скорости).

Теперь исследуем вектор .

Рассмотрим единичный вектор касательной к траектории . Поместим его начало в начало системы координат. Тогда конец вектора будет находиться на сфере единичного радиуса. При движении материальной точки, конец вектора будет перемещаться по этой сфере. То есть он будет вращаться вокруг своего начала. Пусть - мгновенная угловая скорость вращения вектора в момент времени . Тогда его производная - это скорость движения конца вектора. Она направлена перпендикулярно вектору . Применим формулу для вращающегося движения. Модуль вектора:
.

Теперь рассмотрим положение точки для двух близких моментов времени. Пусть в момент времени точка находится в положении , а в момент времени - в положении . Пусть и - единичные векторы, направленные по касательной к траектории в этих точках. Через точки и проведем плоскости, перпендикулярные векторам и . Пусть - это прямая, образованная пересечением этих плоскостей. Из точки опустим перпендикуляр на прямую . Если положения точек и достаточно близки, то движение точки можно рассматривать как вращение по окружности радиуса вокруг оси , которая будет мгновенной осью вращения материальной точки. Поскольку векторы и перпендикулярны плоскостям и , то угол между этими плоскостями равен углу между векторами и . Тогда мгновенная скорость вращения точки вокруг оси равна мгновенной скорости вращения вектора :
.
Здесь - расстояние между точками и .

Таким образом мы нашли модуль производной по времени вектора :
.
Как мы указали ранее, вектор перпендикулярен вектору . Из приведенных рассуждений видно, что он направлен в сторону мгновенного центра кривизны траектории. Такое направление называется главной нормалью.

Нормальное ускорение

Нормальное ускорение

направлено вдоль вектора . Как мы выяснили, этот вектор направлен перпендикулярно касательной, в сторону мгновенного центра кривизны траектории.
Пусть - единичный вектор, направленный от материальной точки к мгновенному центру кривизны траектории (вдоль главной нормали). Тогда
;
.
Поскольку оба вектора и имеют одинаковое направление - к центру кривизны траектории, то
.

Из формулы (2) имеем:
(4) .
Из формулы (3) находим модуль нормального ускорения:
.

Умножим обе части уравнения (2) скалярно на :
(2) .
.
Поскольку , то . Тогда
;
.
Отсюда видно, что модуль нормального ускорения равен проекции полного ускорения на направление главной нормали.

Нормальное ускорение материальной точки - это проекция ее полного ускорения на направление, перпендикулярное к касательной к траектории.

Подставим . Тогда
.
То есть нормальное ускорение вызывает изменение направления скорости точки, и оно связано с радиусом кривизны траектории .

Отсюда можно найти радиус кривизны траектории:
.

И в заключении заметим, что формулу (4) можно переписать в следующем виде:
.
Здесь мы применили формулу для векторного произведения трех векторов:
,
в которую подставили
.

Итак, мы получили:
;
.
Приравняем модули левой и правой частей:
.
Но векторы и взаимно перпендикулярны. Поэтому
.
Тогда
.
Это известная формула из дифференциальной геометрии для кривизны кривой.

См. также:

.Тангенциальное ускорение – векторная физическая величина, характеризующая изменение скорости тела по абсолютному значению, численно равная первой производной от модуля скорости по времени и направленная по касательной к траектории в ту же сторону, что и скорость, если скорость возрастает, и противоположно скорости, если она убывает.

4

Нормальное ускорение

.Нормальное ускорение – векторная физическая величина, характеризующая изменение направления скорости, численно равная отношению квадрата скорости к радиусу кривизны траектории, направленная вдоль радиуса кривизны к центру кривизны:

.

Т

ак как векторыинаправлены под прямым углом, то (рис. 1. 17)

, (1.2.9)

5.Угловое ускорение – векторная физическая величина, характеризующая изменение угловой скорости, численно равная первой производной угловой скорости по времени и направленная вдоль оси вращения в ту же сторону, что и угловая скорость, если скорость возрастает, и противоположно ей, если она убывает.

Формулу вставить (1.2.10)

СИ:

Полное ускорение

(линейное)

Поскольку мы ограничиваемся рассмотрением вращения вокруг неподвижной оси, угловое ускорение не делится на составляющие подобно линейному.

Угловое ускорение

Связь между угловыми характеристиками

вращающегося тела и линейными

характеристиками движения его отдельных точек

Р

СИ:

ассмотрим одну из точек вращающегося тела, которая находится от оси вращения на расстоянииR, то есть движется по окружности радиуса R (рис. 1.18).

По истечении времени
точка А переместится в положение А 1 , пройдя расстояние
, радиус-вектор повернется на угол
. Центральный угол, опирающийся на дугу
, в радианной мере равен отношению длины дуги к радиусу кривизны этой дуги:

.

Это остается справедливым и для бесконечно малого интервала времени
:
. Далее, используя определения, легко получить:

; (1.2.11)

Связь между линейными и угловыми характеристиками


; (1.2.12)

. (1.2.13)

1.1.2. Классификация движений. Кинематические законы

Кинематическими законами будем называть законы, выражающие изменение кинематических характеристик движения с течением времени:

Закон пути
или
;

Закон скорости
или
;

Закон ускорения
или
.

Н

Ускорение

Ускорение гоночного автомобиля на старте 4-5 м/с 2

Ускорение реактивного самолета при посадке

6-8 м/ c 2

Ускорение свободного падения вблизи поверхности Солнца 274 м/ c 2

Ускорение снаряда в стволе орудия 10 5 м/ c 2

аиболее информативной характеристикой движения является ускорение, поэтому оно используется в качестве основания для классификации движений.

Нормальное ускорение несет информацию об изменении направления скорости, то есть об особенностях траектории движения:

- движение прямолинейное (направление скорости не меняется);

- движение криволинейное.

Тангенциальное ускорение определяет характер изменения модуля скорости с течением времени. По этому признаку принято выделять следующие виды движения:

- равномерное движение (абсолютное значение скорости не меняется);

- ускоренное движение

- неравномер- (скорость возрастает)

ное движе-
-замедленное движе

ние ние (скорость убывает).

Наиболее простыми частными случаями неравномерного движения являются движения, при которых

- тангенциальное ускорение не зависит от времени, остается постоянным во время движения – равнопеременное движение (равноускоренное или равнозамедленное);

или
- тангенциальное ускорение меняется с течением времени по закону синуса или косинуса – гармоническое колебательное движение (например, грузик на пружине).

Аналогично для вращательного движения:

- равномерное вращение;

- неравномерное вращение

Типы движения записать более компактно

-равноускоренное

вращение

- замедлен-

ное вращение;

- равнопе-

ременное вращение

Крутильные колебания (например, трифилярный подвес – диск, подвешенный на трех упругих нитях, и совершающий колебания в горизонтальной плоскости).

Если известен один из кинематических законов в аналитической форме, то можно найти другие, при этом возможны два типа задач:

I тип – по заданному закону пути
или
найти закон скорости
или
и закон ускорения
или
;

II тип – по заданному закону ускорения
или
найти закон скорости
или
и закон пути
или
.

Эти задачи являются взаимно обратными и решаются на основе применения обратных математических операций. Первый тип задач решается на основе определений, то есть путем применения операции дифференцирования.


- задано

- ?

- ?
.

Второй тип задач решается путем интегрирования. Если скорость есть первая производная от пути по времени, то путь по отношению к скорости можно найти как первообразную. Аналогично: ускорение есть производная от скорости по времени, тогда скорость по отношению к ускорению – первообразная. Математически эти действия выглядят так:

- приращение пути за бесконечно малый промежуток времени
. Для конечного интервала отдоинтегрируем:
. По правилам интегрирования
. Чтобы взять интеграл в правой части, нужно знать вид закона скорости, то есть
. Окончательно, для нахождения положения тела на траектории в произвольный момент времени получаем:

, где (1.2.14)

- изменение скорости за бесконечно малый промежуток времени
.

Для конечного интервала от до:

Тангенциальное ускорение характеризует изменение скорости по модулю (величине) и направлено по касательной к траектории:

,

где  производная модуля скорости,  единичный вектор касательной, совпадающий по направлению со скоростью.

Нормальное ускорение характеризует изменение скорости по направлению и направлено по радиусу кривизны к центру кривизны траектории в данной точке:

,

где R  радиус кривизны траектории,  единичный вектор нормали.

Модуль вектора ускорения может быть найден по формуле

.

1.3. Основная задача кинематики

Основная задача кинематики заключается в нахождении закона движения материальной точки. Для этого используются следующие соотношения:

;
;
;
;

.

Частные случаи прямолинейного движения:

1) равномерное прямолинейное движение: ;

2) равнопеременное прямолинейное движение:
.

1.4. Вращательное движение и его кинематические характеристики

При вращательном движении все точки тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения. Для характеристики вращательного движения вводятся следующие кинематические характеристики (рис. 3).

Угловое перемещение
 вектор, численно равный углу поворота тела
за время
и направленный вдоль оси вращения так, что, глядя вдоль него, поворот тела наблюдается происходящим по часовой стрелке.

Угловая скорость  характеризует быстроту и направление вращения тела, равна производной угла поворота по времени и направлена вдоль оси вращения как угловое перемещение.

При вращательном движении справедливы следующие формулы:

;
;
.

Угловое ускорение характеризует быстроту изменения угловой скорости с течением времени, равно первой производной угловой скорости и направлено вдоль оси вращения:

;
;
.

Зависимость
выражает закон вращения тела.

При равномерном вращении:  = 0,  = const,  = t.

При равнопеременном вращении:  = const,
,
.

Для характеристики равномерного вращательного движения используются период вращения и частота вращения.

Период вращения Т – время одного оборота тела, вращающегося с постоянной угловой скоростью.

Частота вращения  – количество оборотов, совершаемых телом за единицу времени.

Угловая скорость может быть выражена следующим образом:

.

Связь между угловыми и линейными кинематическими характеристиками (рис. 4):

2. Динамика поступательного и вращательного движений

    1. Законы Ньютона Первый закон Ньютона: всякое тело находится в состоянии покоя или равномерного прямолинейного движения, пока воздействие со стороны других тел не выведет его из этого состояния.

Тела, не подверженные внешним воздействиям, называются свободными телами. Система отсчёта, связанная со свободным телом, называется инерциальной системой отсчёта (ИСО). По отношению к ней любое свободное тело будет двигаться равномерно и прямолинейно или находиться в состоянии покоя. Из относительности движения следует, что система отсчёта, движущаяся равномерно и прямолинейно по отношению к ИСО, также является ИСО. ИСО играют важную роль во всех разделах физики. Это связано с принципом относительности Эйнштейна, согласно которому математическая форма любого физического закона должна иметь один и тот же вид во всех инерциальных системах отсчёта.

К основным понятиям, используемым в динамике поступательного движения, относятся сила, масса тела, импульс тела (системы тел).

Силой называется векторная физическая величина, являющаяся мерой механического действия одного тела на другое. Механическое действие возникает как при непосредственном контакте взаимодействующих тел (трение, реакция опоры, вес и т.д.), так и посредством силового поля , существующего в пространстве (сила тяжести, кулоновские силы и т.д.). Сила характеризуется модулем, направлением и точкой приложения.

Одновременное действие на тело нескольких сил ,,...,может быть заменено действием результирующей (равнодействующей) силы:

=++...+=.

Массой тела называется скалярная величина, являющаяся мерой инертности тела. Под инертностью понимается свойство материальных тел сохранять свою скорость неизменной в отсутствие внешних воздействий и изменять её постепенно (т.е. с конечным ускорением) под действием силы.

Импульсом тела (материальной точки) называется векторная физическая величина, равная произведению массы тела на его скорость:
.

Импульс системы материальных точек равен векторной сумме импульсов точек, составляющих систему:
.

Второй закон Ньютона : скорость изменения импульса тела равна действующей на него силе:

.

Если масса тела остается постоянной, то ускорение, приобретаемое телом относительно инер­ци­аль­ной системы отсчета, прямо пропорционально действующей на него силе и обратно пропорционально массе тела:

.

т. е. равна первой производной по времени от модуля скорости, определяя тем самым быстроту изменения скорости по модулю.

Вторая составляющая ускорения, равная

называется нормальной составляющей ускорения и направлена по нормали к траектории к центру ее кривизны (поэтому ее называют также центростремительным ускорением ).

Итак, тангенциальная составляющая ускорения характеризует быстроту изменения скорости по модулю (направлена по касательной к траектории), а нормальная состав­ляющая ускорения - быстроту изменения скорости по направлению (направлена к цен­тру кривизны траектории).

В зависимости от тангенциальной и нормальной составляющих ускорения движе­ние можно классифицировать следующим образом:

1) , а n = 0 - прямолинейное равномерное движение;

2) , а n = 0 - прямолинейное равнопеременное движение. При таком виде движения

Если начальный момент времени t 1 =0, а начальная скорость v 1 =v 0 , то, обозначив t 2 =t и v 2 =v, получим , откуда

Проинтегрировав эту формулу в пределах от нуля до произвольного момента времени t, найдем, что длина пути, пройденного точкой, в случае равнопеременного движения

· 3) , а n = 0- прямолинейное движение с переменным ускорением;

· 4) , а n = const. При скорость по модулю не изменяется, а изменяется по направлению. Из формулы a n =v 2 /r следует, что радиус кривизны должен быть посто­янным. Следовательно, движение по окружности является равномерным;

· 5) , - равномерное криволинейное движение;

· 6) , - криволинейное равнопеременное движение;

· 7) , - криволинейное движение с переменным ускорением.

2) Твёрдое тело, движущееся в трёхмерном пространстве, максимально может иметь шесть степеней свободы: три поступательных и три вращательных

Элементарное угловое перемещение – это вектор, направленный вдоль оси по правилу правого винта и численно равный углу

Угловой скоростью называется векторная величина, равная первой производной угла поворота тела по времени:

Единица - ради­ан в секунду (рад/с).

Угловым ускорением называется векторная величина, равная первой производной угловой скорости по времени:

При вращении тела вокруг неподвижной оси вектор углового ускорения направлен вдоль оси вращения в сторону вектора элементарного приращения угловой скорости. При ускоренном движении вектор сонаправлен вектору (рис.8), при замедлен­ном - противонаправлен ему (рис.9).

Тангенциальная составляющая ускорения

Нормальная составляющая ускорения

При движении точки по кривой линейная скорость направлена

по касательной к кривой и по модулю равна произведению

угловой скорости на радиус кривизны кривой.(связь)

3) Первый закон Ньютона : всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит ее изменить это состояние . Стремление тела сохранять состояние покоя или равномерного прямолинейного движения называется инертностью . Поэтому первый закон Ньютона называют также законом инерции .

Механическое движение относительно, и его характер зависит от системы отсчета. Первый закон Ньютона выполняется не во всякой системе отсчета, а те системы, по отношению к которым он выполняется, называются инерциальными системами отсчета . Инерциальной системой отсчета является такая система отсчета, относительно которой материальная точка, свободная от внешних воздействий, либо покоится, либо движется равномерно и прямолинейно. Первый закон Ньютона утверждает существование инерциальных систем отсчета.

Второй закон Ньютона - основной закон динамики поступательного движения - от­вечает на вопрос, как изменяется механическое движение материальной точки (тела) под действием приложенных к ней сил.

Масса тела - физическая величина, являющаяся одной из основных характеристик материи, определяющая ее инерционные (инертная масса ) и гравитационные (гравитационная масса ) свойства. В настоящее время можно считать доказанным, что инертная и гравитационная массы равны друг другу (с точностью, не меньшей 10 –12 их значения).

Итак, сила - это векторная величина, являющаяся мерой механического воздействия на тело со стороны других тел или полей, в результате которого тело приобретает ускорение или изменяет свою форму и размеры.

Векторная величина

численно равная произведению массы материальной точки на ее скорость и имеющая направление скорости, называется импульсом (количеством движения) этой материаль­ной точки.

Подставляя (6.6) в (6.5), получим

Это выражение - более общая формулировка второго закона Ньютона : скорость изме­нения импульса материальной точки равна действующей на нее силе. Выражение называется уравнением движения материальной точки .

Третий закон Ньютона

Взаимодействие между материальными точками (телами) определяется третьим зако­ном Ньютона : всякое действие материальных точек (тел) друг на друга носит характер взаимодействия; силы, с которыми действуют друг на друга материальные точки, всегда равны по модулю, противоположно направлены и действуют вдоль прямой, соединяющей эти точки:

F 12 = – F 21 , (7.1)

где F 12 - сила, действующая на первую материальную точку со стороны второй;

F 21 - сила, действующая на вторую материальную точку со стороны первой. Эти силы приложены к разным материальным точкам (телам), всегда действуют парами и явля­ются силами одной природы.

Третий закон Ньютона позволяет осуществить переход от динамики отдельной материальной точки к динамике системы материальных точек. Это следует из того, что и для системы материальных точек взаимодействие сводится к силам парного взаимодействия между материальными точками.

Си́ла упру́гости - сила, возникающая при деформации тела и противодействующая этой деформации.

В случае упругих деформаций является потенциальной. Сила упругости имеет электромагнитную природу, являясь макроскопическим проявлением межмолекулярного взаимодействия. В простейшем случае растяжения/сжатия тела сила упругости направлена противоположно смещению частиц тела, перпендикулярно поверхности.

Вектор силы противоположен направлению деформации тела (смещению его молекул).

Закон Гука

В простейшем случае одномерных малых упругих деформаций формула для силы упругости имеет вид: где k - жёсткость тела, x - величина деформации.

СИЛА ТЯЖЕСТИ, сила P, действующая на любое тело, находящееся вблизи земной поверхности, и определяемая как геометрическая сумма силы притяжения Земли F и центробежной силы инерции Q, учитывающей эффект суточного вращения Земли. Направление силы тяжести - вертикаль в данной точке земной поверхности.

существова­нием силы трения , которая препятствует скольжению соприкасающихся тел друг относительно друга. Силы трения зависят от относительных скоростей тел.

Различают внешнее (сухое) и внутреннее (жидкое или вязкое) трение. Внешним трением называется трение, возникающее в плоскости касания двух соприкасающихся тел при их относительном перемещении. Если соприкасающиеся тела неподвижны друг относительно друга, говорят о трении покоя, если же происходит относительное перемещение этих тел, то в зависимости от характера их относительного движения говорят о трении скольжения , качения или верчения .

Внутренним трением называется трение между частями одного и того же тела, например между различными слоями жидкости или газа, скорости которых меняются от слоя к слою. В отличие от внешнего трения здесь отсутствует трение покоя. Если тела скользят относительно друг друга и разделены прослойкой вязкой жидкости (смазки), то трение происходит в слое смазки. В таком случае говорят о гидродинамическом трении (слой смазки достаточно толстый) и граничном трении (толщина смазоч­ной прослойки »0,1 мкм и меньше).

опытным путем установили следующий закон : сила трения скольжения F тр пропорциональна силе N нормального давления, с которой одно тело действует на другое:

F тр = f N ,

где f - коэффициент трения скольжения, зависящий от свойств соприкасающихся поверхностей.

f = tga 0 .

Таким образом, коэффициент трения равен тангенсу угла a 0 , при котором начинается скольжение тела по наклонной плоскости.

Для гладких поверхностей определенную роль начинает играть межмолекулярное притяжение. Для них применяется закон трения скольжения

F тр = f ист (N + Sp 0) ,

где р 0 - добавочное давление, обусловленное силами межмолекулярного притяжения, которые быстро уменьшаются с увеличением расстояния между частицами; S - пло­щадь контакта между телами; f ист - истинный коэффициент трения скольжения.

Сила трения качения определяется по закону, установленному Кулоном:

F тр =f к N/r , (8.1)

где r - радиус катящегося тела; f к - коэффициент трения качения, имеющий размер­ность dim f к =L. Из (8.1) следует, что сила трения качения обратно пропорциональна радиусу катящегося тела.

Жидким (вязким) называется трение между твердым телом и жидкой или газообразной средой или ее слоями.

где - импульс системы. Таким образом, производная по времени от им­пульса механической системы равна геометрической сумме внешних сил, действующих на систему.

Последнее выражение и является законом сохранения импульса : импульс замкнутой системы сохраняется, т. е. не изменяется с течением времени.

Центром масс (или центром инерции ) системы материальных точек называется воображаемая точка С ,положение которой характеризует распределение массы этой системы. Ее ра­диус-вектор равен

где m i и r i - соответственно масса и радиус-вектор i -й материальной точки; n - число материальных точек в системе; – масса системы. Скорость центра масс

Учитывая, что pi = m i v i , a есть импульс р системы, можно написать

т. е. импульс системы равен произведению массы системы на скорость ее центра масс.

Подставив выражение (9.2) в уравнение (9.1), получим

т. е. центр масс системы движется как материальная точка, в которой сосредоточена масса всей системы и на которую действует сила, равная геометрической сумме всех внешних сил, приложенных к системе. Выражение (9.3) представляет собойзакон движения центра масс.

В соответствии с (9.2) из закона сохранения импульса вытекает, что центр масс замкнутой системы либо движется прямолинейно и равномерно, либо остается непо­движным.

5) Моментом силы F относительно неподвижной точки О называется физическая величина, определяемая векторным произведением радиуса-вектора r , проведенного из точ­ки О в точку А приложения силы, на силу F (рис. 25):

Здесь М - псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении от r к F. Модуль момента силы

где a- угол между r и F; r sina = l - кратчайшее расстояние между линией действия силы и точкой О - плечо силы.

Моментом силы относительно неподвижной оси z называется скалярная величина M z , равная проекции на эту ось вектора М момента силы, определенного относительно произвольной точки О данной оси z (рис. 26). Значение момента М z не зависит от выбора положения точки О на оси z.

Если ось z совпадает с направлением вектора М, то момент силы представляется в виде вектора, совпадающего с осью:

Кинетическую энергию вращающегося тела найдем как сумму кинетических энер­гий его элементарных объемов:

Используя выражение (17.1), получаем

где J z - момент инерции тела относительно оси z. Таким образом, кинетическая энергия вращающегося тела

Из сравнения формулы (17.2) с выражением (12.1) для кинетической энергии тела движущегося поступательно (T=mv 2 /2), следует, что момент инерции - мера инертности тела при вращательном движении. Формула (17.2) справедлива для тела вращающегося вокруг неподвижной оси.

В случае плоского движения тела, например цилиндра, скатывающегося с наклонной плоскости без скольжения, энергия движения складывается из энергии поступательного движения и энергии вращения:

где m - масса катящегося тела; v c - скорость центра масс тела; Jc - момент инер­ции тела относительно оси, проходящей через его центр масс; w - угловая скорость тела.

6) Чтобы количественно характеризовать процесс обмена энергией между взаимодействующими телами, в механике вводится понятие работы силы . Если тело движется прямолинейно и на него действует постоянная сила F, которая составляет некоторый угол  с направлением перемещения, то работа этой силы равна произведению проекции силы F s на направление перемещения (F s = F cos), умноженной на перемещение точки приложения силы:

В общем случае сила может изменяться как по модулю, так и по направлению, поэтому формулой (11.1) пользоваться нельзя. Если, однако, рассмотреть элементар­ное перемещение dr, то силу F можно считать постоянной, а движение точки ее приложения - прямолинейным. Элементарной работой силы F на перемещении dr называется скалярная величина

где  - угол между векторами F и dr; ds = |dr| - элементарный путь; F s - проекция вектора F на вектор dr (рис. 13).

Работа силы на участке траектории от точки 1 до точки 2 равна алгебраической сумме элементарных работ на отдельных бесконечно малых участках пути. Эта сумма приводится к интегралу

Чтобы охарактеризовать скорость совершения работы, вводят понятие мощности :

За время dt силаF совершает работу Fdr, и мощность, развиваемая этой силой, в данный момент времени

т. е. равна скалярному произведению вектора силы на вектор скорости, с которой движется точка приложения этой силы; N - величина скалярная.

Единица мощности -ватт (Вт): 1 Вт - мощность, при которой за время 1 с совершается работа 1 Дж (1 Вт = 1 Дж/с).

Кинетическая энергия механической системы - это энергия механического движения этой системы.

Сила F, действуя на покоящееся тело и вызывая его движение, совершает работу, а энергия движущегося тела возрастает на величину затраченной работы. Таким образом, работа dA силы F на пути, который тело прошло за время возрастания скорости от 0 до v, идет на увеличение кинетической энергии dT тела, т. е.

Используя второй закон Ньютона и умножая на перемещение dr получаем

Потенциальная энергия - механическая энергия системы тел, определяемая их вза­имным расположением и характером сил взаимодействия между ними.

Пусть взаимодействие тел осуществляется посредством силовых полей (например, поля упругих сил, поля гравитационных сил), характеризующихся тем, что работа, совершаемая действующими силами при перемещении тела из одного положения в другое, не зависит от того, по какой траектории это перемещение произошло, а зависит только от начального и конечного положений. Такие поля называются потенциальными , а силы, действующие в них, - консервативными . Если же работа, совершаемая силой, зависит от траектории перемещения тела из одной точки в другую, то такая сила называется диссипатнвной ; ее примером является сила трения.

Конкретный вид функции П зависит от характера силового поля. Например, потенциальная энергия тела массой т, поднятого на высоту h над поверхностью Земли, равна

где высота h отсчитывается от нулевого уровня, для которого П 0 =0. Выражение (12.7) вытекает непосредственно из того, что потенциальная энергия равна работе силы тяжести при падении тела с высоты h на поверхность Земли.

Так как начало отсчета выбирается произвольно, то потенциальная энергия может иметь отрицательное значение (кинетическая энергия всегда положительна!). Если принять за нуль потенциальную энергию тела, лежащего на поверхности Земли, то потенциальная энергия тела, находящегося на дне шахты (глубина h" ), П= -mgh".

Найдем потенциальную энергию упругодеформированного тела (пружины). Сила упругости пропорциональна деформации:

где F x уп p - проекция силы упругости на ось х ; k - коэффициент упругости (для пружины - жесткость ), а знак минус указывает, что F x уп p направлена в сторону, противоположную деформации x .

По третьему закону Ньютона, деформирующая сила равна по модулю силе уп­ругости и противоположно ей направлена, т. е.

Элементарная работа dA, совершаемая силой F x при бесконечно малой деформации dx, равна

а полная работа

идет на увеличение потенциальной энергии пружины. Таким образом, потенциальная энергия упругодеформированного тела

Потенциальная энергия системы является функцией состояния системы. Она зависит только от конфигурации системы и ее положения по отношению к внешним телам.

При переходе системы из состояния 1 в какое-либо состояние 2

т. е. изменение полной механической энергии системы при переходе из одного состоя­ния в другое равно работе, совершенной при этом внешними неконсервативными силами. Если внешние неконсервативные силы отсутствуют, то из (13.2) следует, что

d (T +П) = 0,

т. е. полная механическая энергия системы сохраняется постоянной. Выражение (13.3) представляет собой закон сохранение механической энергии : в системе тел, между которыми действуют только консервативные силы, полная механическая энергия со­храняется, т. е. не изменяется со временем.

Линейное перемещение, линейная скорость, линейное ускорение.

Перемеще́ние (в кинематике) - изменение местоположения физического тела в пространстве относительно выбранной системы отсчёта. Также перемещением называют вектор, характеризующий это изменение. Обладает свойством аддитивности. Длина отрезка - это модуль перемещения, измеряется в метрах (СИ).

Можно определить перемещение, как изменение радиус-вектора точки: .

Модуль перемещения совпадает с пройденным путём в том и только в том случае, если при движении направление перемещения не изменяется. При этом траекторией будет отрезок прямой. В любом другом случае, например, при криволинейном движении, из неравенства треугольника следует, что путь строго больше.

Вектор Dr = r -r 0 , проведенный из начального положения движущейся точки в положение ее в данный момент времени (приращение радиуса-вектора точки за рассматриваемый промежуток времени), называется перемещением .

При прямолинейном движении вектор перемещения совпадает с соответствующим участком траектории и модуль перемещения |Dr | равен пройденному пути Ds .
Линейная скорость тела в механике

Скорость

Для характеристики движения материальной точки вводится векторная величина - скорость, которой определяется как быстрота движения, так и его направ­ление в данный момент времени.

Пусть материальная точка движется по какой-либо криволинейной траектории так, что в момент времени t ей соответствует радиус-вектор r 0 (рис. 3). В течение малого промежутка времени Dt точка пройдет путь Ds и получит элементарное (бесконечно малое) перемещение Dr.

Вектором средней скорости называется отношение приращения Dr радиу­са-вектора точки к промежутку времени Dt :

Направление вектора средней скорости совпадает с направлением Dr. При неог­раниченном уменьшении Dt средняя скорость стремится к предельному значению, которое называетсямгновенной скоростью v:

Мгновенная скорость v, таким образом, есть векторная величина, равная первой производной радиуса-вектора движущейся точки по времени. Так как секущая в пре­деле совпадает с касательной, то вектор скорости v направлен по касательной к траек­тории в сторону движения (рис. 3). По мере уменьшения Dt путь Ds все больше будет приближаться к |Dr|, поэтому модуль мгновенной скорости

Таким образом, модуль мгновенной скорости равен первой производной пути по времени:

Принеравномерном движении - модуль мгновенной скорости с течением времени изменяется. В данном случае пользуются скалярной величиной áv ñ -средней скоро­стью неравномерного движения:

Из рис. 3 вытекает, что áv ñ> |ávñ|, так как Ds > |Dr|, и только в случае прямолиней­ного движения

Если выражение ds = v dt (см. формулу (2.2)) проинтегрировать по времени в пре­делах от t до t + Dt , то найдем длину пути, пройденного точкой за время Dt :

В случаеравномерного движения числовое значение мгновенной скорости постоянно; тогда выражение (2.3) примет вид

Длина пути, пройденного точкой за промежуток времени от t 1 до t 2 , дается интегралом

Ускорение и его составляющие

В случае неравномерного движения важно знать, как быстро изменяется скорость с течением времени. Физической величиной, характеризующей быстроту изменения скорости по модулю и направлению, является ускорение .

Рассмотримплоское движение, т.е. движение, при котором все участки траектории точки лежат в одной плоскости. Пусть вектор v задает скорость точки А в момент времени t. За время Dt движущаяся точка перешла в положение В и приобрела скорость, отличную от v как по модулю, так и направлению и равную v 1 = v + Dv. Перенесем вектор v 1 в точку А и найдем Dv (рис. 4).

Средним ускорением неравномерного движения в интервале от t до t + Dt называется векторная величина, равная отношению изменения скорости Dv к интервалу вре­мени Dt

Мгновенным ускорением а (ускорением) материальной точки в момент време­ни t будет предел среднего ускорения:

Таким образом, ускорение a есть векторная величина, равная первой производной скорости по времени.

Разложим вектор Dv на две составляющие. Для этого из точки А (рис. 4) по направлению скорости v отложим вектор , по модулю равный v 1 . Очевидно, что вектор , равный , определяет изменение скорости за время Dt по моду­лю : . Вторая же составляющая вектора Dv характеризует изменение ско­рости за время Dt по направлению.

Тангенциальное и нормальное ускорение.

Тангенциа́льное ускоре́ние - компонента ускорения, направленная по касательной к траектории движения. Совпадает с направлением вектора скорости при ускоренном движении и противоположно направлено при замедленном. Характеризует изменение модуля скорости. Обозначается обычно или (, итд в соответствии с тем, какая буква выбрана для обозначения ускорения вообще в данном тексте).

Иногда под тангенциальным ускорением понимают проекцию вектора тангенциального ускорения - как он определен выше - на единичный вектор касательной к траектории, что совпадает с проекцией (полного) вектора ускорения на единичный вектор касательной то есть соответствующий коэффициент разложения по сопутствующему базису. В этом случае используется не векторное обозначение, а «скалярное» - как обычно для проекции или координаты вектора - .

Величину тангенциального ускорения - в смысле проекции вектора ускорения на единичный касательный вектор траектории - можно выразить так:

где - путевая скорость вдоль траектории, совпадающая с абсолютной величиной мгновенной скорости в данный момент.

Если использовать для единичного касательного вектора обозначение , то можно записать тангенциальное ускорение в векторном виде:

Вывод

Выражение для тангенциального ускорения можно найти, продифференцировав по времени вектор скорости, представленный в виде через единичный вектор касательной :

где первое слагаемое - тангенциальное ускорение, а второе - нормальное ускорение.

Здесь использовано обозначение для единичного вектора нормали к траектории и - для текущей длины траектории (); в последнем переходе также использовано очевидное

и, из геометрических соображений,

Центростремительное ускорение(нормальное) - часть полного ускорения точки, обусловленного кривизной траектории и скоростью движения по ней материальной точки. Такое ускорение направлено к центру кривизны траектории, чем и обусловлен термин. Формально и по существу термин центростремительное ускорение в целом совпадает с термином нормальное ускорение, различаясь скорее лишь стилистически (иногда исторически).

Особенно часто о центростремительном ускорении говорят, когда речь идет о равномерном движении по окружности или при движении, более или менее приближенном к этому частному случаю.

Элементарная формула

где - нормальное (центростремительное) ускорение, - (мгновенная) линейная скорость движения по траектории, - (мгновенная) угловая скорость этого движения относительно центра кривизны траектории, - радиус кривизны траектории в данной точке. (Cвязь между первой формулой и второй очевидна, учитывая).

Выражения выше включают абсолютные величины. Их легко записать в векторном виде, домножив на - единичный вектор от центра кривизны траектории к данной ее точки:


Эти формулы равно применимы к случаю движения с постоянной (по абсолютной величине) скоростью, так и к произвольному случаю. Однако во втором надо иметь в виду, что центростремительное ускорение не есть полный вектор ускорения, а лишь его составляющая, перпендикулярная траектории (или, что то же, перпендикулярная вектору мгновенной скорости); в полный же вектор ускорения тогда входит еще и тангенциальная составляющая (тангенциальное ускорение) , по направлению совпадающее с касательной к траектории (или, что то же, с мгновенной скоростью).

Вывод

То, что разложение вектора ускорения на компоненты - одну вдоль касательного к траектории вектора (тангенциальное ускорение) и другую ортогональную ему (нормальное ускорение) - может быть удобным и полезным, довольно очевидно само по себе. Это усугубляется тем, что при движении с постоянной по величине скоростью тангенциальная составляющая будет равной нулю, то есть в этом важном частном случае остается только нормальная составляющая. Кроме того, как можно увидеть ниже, каждая из этих составляющих имеет ярко выраженные собственные свойства и структуру, и нормальное ускорение содержит в структуре своей формулы достаточно важное и нетривиальное геометрическое наполнение. Не говоря уже о важном частном случае движения по окружности (который, к тому же, практически без изменения может быть обобщен и на общий случай).

Loading...Loading...